

OriGene Technologies Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850 UNITED STATES Phone: +1-858-888-7900 Fax: +1-858-888-7904 <u>US-info@acris-antibodies.com</u>

AR10506PU-L OriGene EU

Acris Antibodies GmbH Schillerstr. 5 32052 Herford GERMANY Phone: +49-5221-34606-0 Fax: +49-5221-34606-11 info@acris-antibodies.com

E. coli Outer Membrane - A / ompA - Purified

Catalog No.:	AR10506PU-L
Quantity:	1 mg
Background:	The OmpA protein is one of the main outer-membrane proteins of a large array of Gram- negative bacteria such as A. salmonicida, Shigella dysenteriae and E. coli. OmpA's major physiological functions include maintenance of the structural integrity and morphology of the cells and porin activity, as well as a role in conjugation and bacteriophage binding. Achromogenic atypical Aeromonas salmonicida is the causative agent of goldfish ulcer disease. Virulence of this bacterium is associated with the production of a paracrystalline outer membrane A-layer protein. The species specific structural gene for the monomeric form of A-protein was cloned into a pET-3d plasmid in order to express and produce a recombinant form of the protein in E. coli BL21(DE3). The induced protein was isolated from inclusion bodies by a simple solubilization-renaturation procedure and purified by ion exchange chromatography on Q-Sepharose to over 95% pure monomeric protein. Recombinant A-Protein was compared by biochemical, immunological and molecular methods with the A-Protein isolated from atypical A. salmonicida bacterial cells by the glycine and the membrane extraction methods.
Species:	E. coli
Source:	E. coli
Format:	State: Sterile Filtered White lyophilized (freeze-dried) powder Purity: >98.0% as determined by both RP-HPLC and SDS-PAGE analysis. Purification Method: Proprietary chromatographic techniques. Reconstitution: Restore in sterile 0.4% NaHCO ₃
Description:	The recombinant form was found to be undistinguishable from the wild type when examined by SDS-PAGE and gel filtration chromatography yielding a 48 kDa monomeric protein. The immunological similarity of the protein samples was demonstrated by employing polyclonal and monoclonal antibodies in ELISA and Western Blot techniques. All forms of A-Protein were found to activate the secretion of Tumour Necrosis Factor alpha from murine macrophage. For Ref see Maurice et al. (1999) Protein Expression and Purification 16, 396-404. AA Sequence: The sequence of the first five N-terminal amino acids was determined and was
	 The sequence of the first five N-terminal amino acids was determined and was found to be Met-Asp-Val-Val-Ile-Ser. Biological Activity: The interaction of bacterial and recombinant A-layer protein with murine macrophages was directed at determining the effect of A-protein on intracellular events that occur in primed macrophages. This was accomplished by measuring the cytotoxic product produced by peritoneal macrophages when exposed to A-protein coated latex beads. Thioglycolate elicited macrophages exhibited a low level of activation (18% cytotoxicity) that was significantly increased (48% cytotoxicity) in the presence of latex

For research and in vitro use only. Not for diagnostic or therapeutic work. Material Safety Datasheets are available at www.acris-antibodies.com or on request.

MS/20120912

AR10506PU-L: E. coli Outer Membrane -A / ompA - Purified

beads. Coating of the latex beads with each of the three A-protein products resulted in an increase of cytoxicity (mean +/- SEM) from 48% to 91%.

Storage:Prior to reconstitution store at 2-8°C for one month or desiccated below -18°C.
Following reconstitution store undiluted at 2-8°C for one month
or (in aliquots) at -20°C for longer.
For long term storage it is recommended to add a carrier protein (0.1% HSA or BSA).
Avoid repeated freezing and thawing.
Shelf life: one year from despatch.

MS/20120912